



# Mining Analyzer XRF-3360



Mining Analyzer Intrument is a professional manufacturer of high-performance X-ray Fluorescence Spectrometer. The high-performance desktop XRF geology and mining analyzer-XRF-3360, brought up in 2011, is equipped with globally advanced analysis technology, intelligent vacuum system and developed electronic technology. Combined with low-energy tube. vacuum system and patent low background technology, it efficiently reduces testing interference, and improves energy resolution of Mg, Al, Si, P and ather light elements in geology and minerals.

## **>>>** Specialized in Mineral Elements and Grade Testing

- > XRF-3360 Mining Analyzer is specially designed for geology and mining industries.
- > This instrument features high precision, fast testing speed and easy operation etc.
- Bear several testing modes, including alloy analysis, soil analysis, precious analysis, RoHS analysis, loose and pressed powders and filters
- Testing samples includes minerals, slag, rocks, etc. Analytical content is from Na to U. Testing samples can be solide, liquids, and powders

## Performance Advantages

- Highly efficint super-thin window X-ray light tube which is specially developed for mineral testing reaches the international advanced level
- > Silicon Drift Detector (SDD), provides better energy linearity, resolution, spectrum charactaristics and higher peak/base ratio
- > Analytical technologies Itd-signal-to-Noise Enhancer (SNE), improves the signal processing ability by 25 times or more
- Built-in CMOS HD camera
- > Automatic switch of collimator and filter according to different samples, it eliminates the troublesome manual operation
- > Atmosphere: Helium mode, Air or vacuum mode





#### > Triple X-ray protection design

- (1)Machanical protection: Segregate X-ray
- (2)Electronical protection: Automatic shut-down of X-ray when opening the cover during testing.
- (3)Software protecting: Automatic shut-down of software program when opening the cover during testing.
- > LCD screen directly shows the important parameters: tube voltage, tube current and vacuum degree
- > 2L vacuum pump

## >>> Technical Specifications

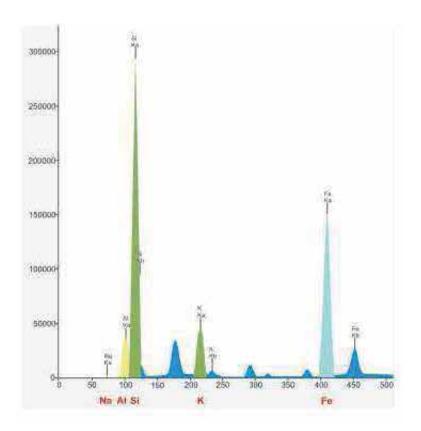
Measurable range: Na to U Analytical range (sensitivity): ppm-100% (different materials, with different analytical analytical range) Simultaneous analytical: Testing tens of elements simultaneously Precision: 0.05% (content 96%) Type of Excitation: Polarised Sample loading position: Minimum 8 position with spinner X-ray window: Beryllium window Testing time:60s-200s Resolution: 135eV Tube voltage: 5KV-50KV Tube current: 50µ A-1000µ A Beam filters: 5

### **>>>** Product Parameters

Power: 200W Ambient temperature: 15°C-30°C Sample chamber size: 320mm x 100mm Weight: 65kg Voltage input: AC 220V, 50Hz (Optional: 110V) Ambient humidity: 35%-70% Instument dimension: 660mm x 510mm x 350mm Radiation Shielding and warning indicator for X-Ray emission ►►►► Standard Configuration Highly efficient super-thin window X-ray light tube made of Pd and co alloy

Signal-to-Noise Enhancer CMOS HD camera Collimator and filter Triple safety protection mode 90mm x 70mm LCD Vacuum pump

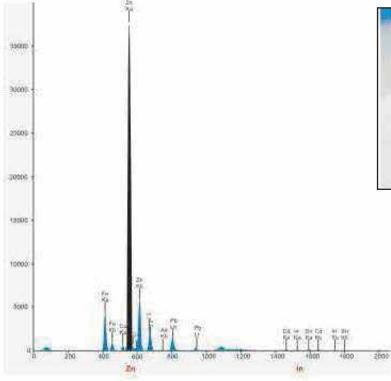
## **Software**


Qualitative analysis Quantitative analysis RoHS analysis (Cd, Pb, Cr, Br, Hg) Simplified analysis solution Report creation and daily check features





# **Application Cases**

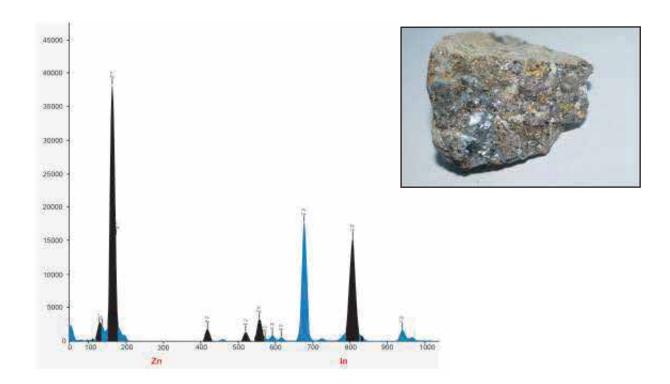

#### Case One Kaolin



| Name                        | Na2O   | A1203   | SiO2    | Fe203  | K20    |
|-----------------------------|--------|---------|---------|--------|--------|
| Kaolin 1                    | 0.4775 | 18.3222 | 74.6662 | 4,8268 | 3,4161 |
| Kaolin 2                    | 0.5892 | 16,5028 | 74.6302 | 4.8413 | 3,4483 |
| Kaofin-3                    | 0.4711 | 16.4921 | 74.6794 | 4.8281 | 3.4532 |
| Kaolin-4                    | 0.5814 | 16.4986 | 74.6798 | 4 8460 | 3.4570 |
| Kaokn 5                     | 0.5375 | 16.4457 | 74.6653 | 4.8253 | 3.4422 |
| Kaolin 6                    | 0.5425 | 16.4979 | 74.6883 | 4.8258 | 3.4540 |
| Kaolin-7                    | 0.5494 | 16.4726 | 74.6485 | 4.8116 | 3.4443 |
| Kaolin-ä                    | 0.4972 | 16,4997 | 74,7446 | 4.8327 | 3.4443 |
| Kaolin-9                    | 0.5439 | 16,5299 | 74,6029 | 4.8235 | 3.4394 |
| Kaolin 10                   | 0.4972 | 16.4562 | 74.6771 | 4,8126 | 3.4386 |
| Kaohn-11                    | 0.5773 | 16.5287 | 74.7196 | 4.8233 | 3.4478 |
| Average value               | 0.5331 | 16.4769 | 74 6729 | 4.8270 | 3.4441 |
| Range                       | 0.1181 | 0.2076  | 0.1416  | 0.0343 | 0.0409 |
| Standard deviation          | 0.0418 | 0.0576  | 0.0388  | 0.0104 | 0.0110 |
| Relative standard deviation | 7.8326 | 0,3495  | 0.0520  | 0.2147 | 0.3207 |



#### Case Two Zinc concentrate






| Name                        | ln.    | Zn      |
|-----------------------------|--------|---------|
| Zn Mineral 1                | 0.1662 | 45.7814 |
| Zn Mineral 2                | 0.1814 | 45.6665 |
| Zn Mineral 3                | 0.1681 | 45.7325 |
| Zn Mineral 4                | 0.1843 | 45.7121 |
| Zn Mineral S                | 0.17   | 45.7047 |
| Zn Mineral S                | 8.174  | 45.5882 |
| Zn Mineral 7                | 0.1866 | 45.5271 |
| Zn Mineral 8                | 0.1882 | 45.6769 |
| Zn Mineral 9                | 0.1857 | 45.6586 |
| Zin Mineral 10              | 0.1804 | 45.6416 |
| Zn Mineral 11               | 0.1808 | 45.7063 |
| Average value               | 0.1787 | 45:6724 |
| Standard deviation          | 0.0078 | 0.0698  |
| Relative standard deviation | 4.3849 | 0.1527  |



#### Case Three Lead concentrate



| Name                        | Pb    | Zn   | Cu   | Fe    | Ca   | Si   | S     | Mg    | AL   |
|-----------------------------|-------|------|------|-------|------|------|-------|-------|------|
| 1                           | 53.62 | 5.05 | 3.58 | 10.11 | 1.19 | 3.98 | 14.16 | 0.28  | 0.27 |
| 2                           | 53,45 | 4.95 | 3.48 | 9.91  | 1.28 | 3.37 | 15.30 | 0.32  | 0.26 |
| 3                           | 53.32 | 5.15 | 3.49 | 9.89  | 1.32 | 3.54 | 15.23 | 0.20  | 0.26 |
| 4                           | 53,84 | 5.13 | 3.29 | 9.94  | 1.26 | 3.46 | 14.98 | 0.35  | 0.24 |
| 5                           | 53.42 | 5.07 | 3.88 | 9.69  | 1.25 | 3.37 | 15.36 | 0.61  | 0.25 |
| 6                           | 53.79 | 5.09 | 3.46 | 10.10 | 1.24 | 4.12 | 15.48 | 0.29  | 0.28 |
| 7                           | 53.23 | 5.04 | 3.48 | 9.97  | 1.28 | 3.84 | 14.98 | 0.44  | 0.26 |
| 8                           | 53.31 | 5.06 | 3.64 | 9.66  | 1.19 | 3.21 | 14,65 | 0.52  | 0.24 |
| 9                           | 53.80 | 5.13 | 3.54 | 9.76  | 1.34 | 3.94 | 14.32 | 0.42  | 0.27 |
| 10                          | 53.19 | 5.01 | 3.31 | 9.82  | 1.27 | 4.16 | 15.04 | 0.37  | 0.26 |
| 11                          | 52.86 | 5.34 | 3.67 | 9.24  | 1.60 | 3.72 | 14.16 | 0.43  | 0.29 |
| Average value               | 53.44 | 5.09 | 3.53 | 9.83  | 1.29 | 3.70 | 14.88 | 0.38  | 0.26 |
| Standard deviation          | 0.30  | 0.10 | 0.17 | 0.24  | 0.11 | 0.33 | 0.48  | 0.12  | 0.02 |
| Relative standard deviation | 0.57  | 1.96 | 4.68 | 2.48  | 8.64 | 8,90 | 3.25  | 30.37 | 5.87 |



## PERIODIC TABLE OF ELEMENTS

(Characteristic X-Ray energy table)

| 14  | <u>AL</u>    |                                                                     |                         |                                                   |                                                                     |                                                                     |                                                                     |                                                                     |                                                   |                                                                     |                                                                      |                                                                     |                                                   |                                                                      |                                                                  |                                                                     |                                                    | 0<br>2 He<br>41108                                                 |
|-----|--------------|---------------------------------------------------------------------|-------------------------|---------------------------------------------------|---------------------------------------------------------------------|---------------------------------------------------------------------|---------------------------------------------------------------------|---------------------------------------------------------------------|---------------------------------------------------|---------------------------------------------------------------------|----------------------------------------------------------------------|---------------------------------------------------------------------|---------------------------------------------------|----------------------------------------------------------------------|------------------------------------------------------------------|---------------------------------------------------------------------|----------------------------------------------------|--------------------------------------------------------------------|
| 142 |              | 11A<br>4 Be<br>9.012<br>0.110                                       |                         |                                                   |                                                                     |                                                                     |                                                                     |                                                                     |                                                   |                                                                     |                                                                      |                                                                     | IIIA                                              | IVA                                                                  | NA                                                               | VIA                                                                 | VII A<br>18,99<br>0.677                            | 10Ne<br>2017<br>0.861                                              |
| 小茂  |              | 12Mg<br>24.31<br>1.254                                              | III B                   | IV B                                              | VB                                                                  | VI B                                                                | VII B                                                               |                                                                     | VIII                                              |                                                                     | IB                                                                   | ПВ                                                                  | 19A1<br>26 90<br>1 487                            |                                                                      |                                                                  |                                                                     | 110<br>35,40<br>2,622<br>2,817                     | 18Ar<br>39.94<br>2.957<br>3.191                                    |
| 1   |              | 20Ca<br>40.08<br>3.690<br>4.012<br>0.341<br>0.344                   | 4.088<br>4.459<br>0.395 | 22Ti<br>47.90<br>4.508<br>4.931<br>0.452<br>0.458 | 23 V<br>60.94<br>4.949<br>5.427<br>0.51<br>0.519                    | 24Cr<br>51.99<br>5.411<br>5.947<br>0.571<br>0.581                   | 25Mn<br>54.94<br>5.895<br>6.492<br>0.636<br>0.647                   | 26 Fe<br>55.84<br>6.400<br>7.059<br>0.704<br>0.717                  | 27Co<br>58.93<br>6.925<br>7.649<br>0.775<br>0.790 | 0.849                                                               | 29Cu<br>63.54<br>8.041<br>8.997<br>0.928<br>0.948                    | 8.631<br>9.572<br>1.009                                             | 31Ga<br>69:72<br>9.243<br>10:26<br>1.096<br>1.122 | 32Ge<br>725<br>9876<br>1098<br>1,186<br>1,216                        |                                                                  |                                                                     | 3884<br>79.90<br>13.20<br>1,48<br>1,520            | 96Kr<br>83.8<br>12.63<br>14.12<br>1.587<br>1.638                   |
| 10  |              | 38St<br>87.82<br>14.14<br>15.85<br>1.806<br>1.872                   | 19.93<br>18.75<br>1.922 | 15.75<br>17.69<br>2.042<br>2.124<br>2.302         | 41Nb<br>92.91<br>16.58<br>18.65<br>2.166<br>2.257<br>2.462<br>1.902 | 42M0<br>95,94<br>17 44<br>19,63<br>2,293<br>2,395<br>2,623<br>2,015 | 43Tc<br>F(99)<br>18.33<br>20.65<br>2.424<br>2.538<br>2.792<br>2.122 | 44Ru<br>101.0<br>19.24<br>21.69<br>2.558<br>2.683<br>2.964<br>2.252 | 20,17<br>22,76<br>2,696<br>2,834                  | 46Pd<br>105.4<br>21.12<br>23.86<br>2.838<br>2.990<br>3.328<br>2.503 | 47 Ag<br>107.9<br>22.10<br>24.99<br>2.984<br>3.151<br>3.519<br>2.633 | 48Cd<br>112.4<br>23.11<br>26.14<br>3.133<br>3.316<br>3.716<br>2.767 | 24.18<br>27.38<br>3.287                           | 5086<br>118.6<br>25.19<br>28.60<br>3.444<br>3.062<br>4.1.11<br>3.044 | 26:27<br>29:85<br>3:905<br>3:943<br>4:347                        |                                                                     | 28-51<br>32-44<br>3-937<br>4-220<br>4-200<br>4-200 | 54Xe<br>1313<br>29.67<br>33.78<br>4.111<br>4.422<br>5.036<br>3.636 |
| -15 | <b>LEASE</b> | 56Ba<br>137.3<br>32.07<br>36.55<br>4.467<br>4.828<br>5.531<br>3.953 | Ln                      | 55.38<br>63.56<br>7.898<br>9.021<br>10.51         | 73Ta<br>1809<br>57.11<br>65.56<br>8.145<br>9.341<br>10.81<br>7.172  | 74 W<br>183,8<br>58,85<br>67,59<br>8,396<br>9,670<br>11,28<br>7,385 | 75Re<br>186,2<br>60,66<br>8,651<br>10,01<br>11,68<br>7,602          | 760s<br>190.2<br>62.48<br>71.78<br>8.910<br>10.35<br>12.09<br>7.821 | 9.173<br>10.71<br>12.51                           | 78Pt<br>195.0<br>66.25<br>76.13<br>9.441<br>11.07<br>12.94<br>8.267 |                                                                      | 80Hg<br>200.5<br>70.10<br>80.66<br>9.987<br>11.82<br>13.82<br>8.720 | 82.00<br>10.27<br>12.21<br>14.28                  | 85.36<br>10.55<br>12.63<br>14.75                                     | 83Bi<br>2084<br>7632<br>87,77<br>1084<br>13,02<br>15,24<br>9,419 | 84Po<br>(200)<br>78.46<br>90.24<br>11.13<br>13.44<br>15.74<br>8.662 | 的信                                                 |                                                                    |
| 7   |              | 88 Ra<br>226.0<br>87 44<br>100 6<br>12.34<br>15.23<br>17.8<br>10.60 | 1                       |                                                   | Alkali<br>Haloç<br>Alkali                                           | jen                                                                 | I                                                                   | Lar                                                                 | n-Met<br>nthano<br>re gas                         | oids 🛛                                                              | Acti                                                                 | nides                                                               | nal ele<br>up me                                  |                                                                      |                                                                  |                                                                     |                                                    |                                                                    |

| Ln | 138.9<br>33.30<br>37.99<br>4.651<br>5.043<br>5.789 | 140.1<br>34.57<br>39.45<br>4.840<br>5.262<br>6.052 | 140.9<br>3536<br>40.95<br>5.034<br>5.489<br>6.322 | 144.2<br>37.19<br>42.48<br>5.230<br>5.722<br>6.602 | ((147)<br>38,54<br>14,05<br>5,431<br>5,956<br>6,891                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 150.4<br>39.91<br>45.65<br>5.636<br>6.200<br>7.180 | 152.0<br>41.32<br>47.28<br>5.846<br>6.456<br>7.478 | 157.2<br>42.76<br>48.95<br>6.059<br>6.714<br>7.778 | 158.9<br>44.23<br>50.65<br>6.276<br>6.979<br>8.104 | 162.5<br>45.73<br>52.38<br>6.495<br>7,249<br>8.418 | 164.9<br>47.26<br>54.16<br>6.720<br>7.528<br>8.748 | 167.2<br>48.82<br>55.96<br>6.948<br>7.810<br>9.089 | 168.9<br>50.41<br>57.81<br>7.181<br>8.103<br>9.424 | 70fb<br>173,0<br>52,04<br>59,69<br>7,414<br>8,401<br>9,779<br>6,544 | 175.0<br>53.59<br>61.61<br>7.654<br>8.708<br>10.14 |
|----|----------------------------------------------------|----------------------------------------------------|---------------------------------------------------|----------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|----------------------------------------------------|----------------------------------------------------|----------------------------------------------------|----------------------------------------------------|----------------------------------------------------|----------------------------------------------------|----------------------------------------------------|---------------------------------------------------------------------|----------------------------------------------------|
| An | 「日本の日本」                                            |                                                    |                                                   |                                                    | 0.9550<br>0.9550<br>0.9351<br>0.9351<br>0.9351<br>0.955<br>0.955<br>0.955<br>0.955<br>0.955<br>0.9550<br>0.9550<br>0.9550<br>0.9550<br>0.9550<br>0.9550<br>0.9550<br>0.9550<br>0.9550<br>0.9550<br>0.9550<br>0.9550<br>0.9550<br>0.9550<br>0.9550<br>0.9550<br>0.9550<br>0.9550<br>0.9550<br>0.9550<br>0.9550<br>0.9550<br>0.9550<br>0.9550<br>0.9550<br>0.9550<br>0.9550<br>0.9550<br>0.9550<br>0.9550<br>0.9550<br>0.9550<br>0.9550<br>0.9550<br>0.9550<br>0.9550<br>0.9550<br>0.9550<br>0.9550<br>0.9550<br>0.9550<br>0.9550<br>0.9550<br>0.9550<br>0.9550<br>0.9550<br>0.9550<br>0.9550<br>0.9550<br>0.9550<br>0.9550<br>0.9550<br>0.9550<br>0.9550<br>0.9550<br>0.9550<br>0.9550<br>0.9550<br>0.9550<br>0.9550<br>0.9550<br>0.9550<br>0.9550<br>0.9550<br>0.9550<br>0.9550<br>0.9550<br>0.9550<br>0.9550<br>0.9550<br>0.9550<br>0.9550<br>0.9550<br>0.9550<br>0.9550<br>0.9550<br>0.9550<br>0.9550<br>0.9550<br>0.9550<br>0.9550<br>0.9550<br>0.9550<br>0.9550<br>0.9550<br>0.9550<br>0.9550<br>0.9550<br>0.9550<br>0.9550<br>0.9550<br>0.9550<br>0.9550<br>0.9550<br>0.9550<br>0.9550<br>0.9550<br>0.9550<br>0.9550<br>0.9550<br>0.9550<br>0.9550<br>0.9550<br>0.9550<br>0.9550<br>0.9550<br>0.9550<br>0.9550<br>0.9550<br>0.9550<br>0.95500<br>0.95500<br>0.95500<br>0.95500<br>0.9550000000000 |                                                    |                                                    | - 田田市 男声を                                          |                                                    |                                                    |                                                    |                                                    |                                                    |                                                                     |                                                    |



## HPLC Servicing, Validation, Trainings and Preventive Maintenance :

HPLC Servicing Trainings AMC's/CMC Validations Instruments

:We have team of service engineers who can attend to any make of HPLC promptly @the most affordable cost. :We also take up preventive Maintenace to reduce downtime of HPLC's :We offer user training both in-House and at customer sites on HPLC principles, operations, troubleshooting. :We have protocols for carrying out periodic Validations as per GLP/GMP/U SFDA norms

:We offer instruments / Renting Services Modules like pumps, detector etc. on Rent.



## About Analytical Technologies

Analytical Technologies is synonymous for offering technologies for doing analysis and is the Fastest Growing Global Brand having presence in at least 96 countries across the globe. Analytical Technologies Limited is an ISO :9001 Certified Company engaged in Designing, Manufaturing, Marketing & providing Services for the Analytical, Chromatography, Spectroscopy, Bio Technology, Bio Medical, Clinical Diagnostics, Material Science & General Laboratory Instrumentation. Analytical Technologies, India has across the Country operations with at least 4 Regional Offices, 6 Branch Offices & Service Centers. Distributors & Channel partners worldwide.

## About Analytical Technologies



**Optical Emission** Spectrophotometer

**Fully Automated** 

CLIA



NOVA Basic Semi -Auto

Chemistry Analyzer



Automated Bio Chemistry Analyzer

PCR/Gradient PCR/

RTPCR













Random access Analyzer for immunoassay Proteins & clinical chemistry



Total Organic













Water purification

system







## **Image: Second S**



## Corporate Social Responsibility

TM

Analytical Foundation is a Nonprofit Organization (NGO) found for the purpose of:



1.Research & Innovation Scientist's awards / QC Professional Award : Quality life is possible by innovation only and the innovation is possible by research only, hence ANALYTICAL FOUNDATION is committed to identify such personallities for their contributions across various field of Science and Technology and awarding them yearly. To participate for award, send us your details of research / testing / publication at info@analyticalfoundation.org

2. Improving quality of life by offering YOGA Training courses, Work shops / Seminars etc.

3. ANALYTICAL FOUNDATION aims to DETOXIFY human minds, souls and body by means of Yoga, Meditation, Ayurveda, Health Care, Awards, Media, Events, Camps etc.

## **Image: Reach us @**





#### HPLC Solutions MultipleLabs

**Corporate & Regd. Office:** Analytical House, # E67 & E68, Ravi Park, Vasna Road, Baroda, Gujarat 390 015. INDIA

T: +91 265 2253620 +91 265 2252839 +91 265 2252370 F: +91 265 2254395

#### E: info@hplctechnologies.com info@multiplelabs.com info@analyticalgroup.net info@analyticalbiomed.com

**Analytical Distributors** 

Analytical Bio-Med

W. www.ais-india.com www.analycalgroup.net www.hplctechnologies.com www.multiplelabs.com

**Analytical Foundation (Trust)** 

Sales & Support Offices: across the country : Distributors & Channel partners World Wide